Spatial learning and long-term potentiation in the dentate gyrus of the hippocampus in animals developmentally exposed to Aroclor 1254.
نویسندگان
چکیده
Developmental exposure to polychlorinated biphenyls (PCBs) has been associated with cognitive deficits in children. Rodent studies have revealed impairments in learning tasks involving the hippocampus. The present study sought to examine hippocampal synaptic plasticity in the dentate gyrus and spatial learning in animals exposed to PCBs early in development. Pregnant Long-Evans rats were administered either corn oil (control) or 6 mg/kg/day of a commercial PCB mixture, Aroclor 1254 (A1254) by gavage from gestational day (GD) 6 until pups were weaned on postnatal day (PND) 21. Spatial learning was assessed at 3 months of age in male and female offspring using the Morris water maze. Latency to find a hidden platform that remained in the same position over 20 days of testing did not differ between control and PCB-exposed groups. Neither were group differences evident in a repeated acquisition version of the task in which the platform remained in the same position over the 2 daily trials but was moved to a new spatial location each day. Male littermates of animals in the behavioral study were tested electrophysiologically at 5-7 months of age. Field potentials evoked by perforant path stimulation were recorded in the dentate gyrus under urethane anesthesia. Input/output (I/O) functions were assessed by averaging the response evoked in the dentate gyrus to stimulus pulses delivered to the perforant path in an ascending intensity series. Long-term potentiation (LTP) was induced by delivering a series of brief, high-frequency train bursts to the perforant path at increasing stimulus intensities, and I/O functions were reassessed 1 h later. No differences in baseline synaptic population spike (PS) and excitatory postsynaptic potential (EPSP) slope amplitudes were discerned between the groups prior to train delivery. Post-train I/O functions, however, revealed a decrement in the magnitude of evoked LTP in PCB-exposed animals, and an increase in the train intensity required to induce LTP. The observed dissociation between impaired hippocampal plasticity, in the absence of a detectable deficit in performance of a hippocampal-dependent task, may be due to task complexity, the maintenance of some degree of plasticity in the PCB-exposed animals, or the possibility that intact dentate gyrus LTP may not be requisite for water-maze learning.
منابع مشابه
Low-power density of 950 MHz radiation does not affect long-term potentiation in rat dentate gyrus
Introduction: Over the last decade, exposure to non-ionizing electromagnetic waves due to base station antenna has increased. This in vivo study was planned for evaluating the effects of whole-body exposure to 950 MHz field of GSM mobile phone system on rat dentate gyrus long-term potentiation. Materials and Methods: 24 naive male Wistar rats (3 month old, 225|¡|25 g) were randomly divided in t...
متن کاملEffect of forced treadmill exercise on long-term potentiation (LTP) in the dentate gyrus of hippocampus in male rats
Introduction: Previous studies indicate that exercise influences cognitive function. Nevertheless, considering that exercise in animal study can be voluntary, or forced, effects of exercise (specially forced exercise) on learning and memory abides as a matter of controversy. The present study aimed to investigate the effects of treadmill exercise on LTP in the dentate gyrus of rats. Methods: T...
متن کاملEffects of parental morphine addiction on long term potentiation of the perforant path to dentate gyrus in rat offsprings
Background: Evidences show that parental morphine addiction impairs CNS development, learning and memory in offsprings. Since long term potentiation (LTP) is a cellular mechanism of learning and memory, in this study the effect of parental morphine addiction on LTP induction in dentate gyrus by high frequency stimulation of perforant path was assessed. Materials and methods: In this experiment...
متن کاملBeneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats
Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2000